73 research outputs found

    Active networking : one view of the past, present, and future

    Get PDF
    All distributed computing systems face the architectural question of the location (and nature) of programmability in the telecommunications networks, computers, and other peripheral devices comprising them. The perspective of this paper is that network elements should be as programmable as possible, to enable the most flexible distributed computing systems. There has been a persistent confluence among operating systems, programming languages, networking and distributed systems. We demonstrate how these interactions led to what is called active networking , and in the spirit of vox audita perit, littera scripta manet (the spoken word perishes, but the written word remains), include an account of how it was made to happen. Lessons are drawn both from the broader research agenda, and the specific goals pursued in the SwitchWare project. We speculate on likely futures for active networking

    SwitchWare: Accelerating Network Evolution (White Paper)

    Get PDF
    We propose the development of a set of software technologies ( SwitchWare ) which will enable rapid development and deployment of new network services. The key insight is that by making the basic network service selectable on a per user (or even per packet) basis, the need for formal standardization is eliminated. Additionally, by making the basic network service programmable, the deployment times, today constrained by capital funding limitations, are tremendously reduced (to the order of software distribution times). Finally, by constructing an advanced, robust programming environment, even the service development time can be reduced. A SwitchWare switch consists of input and output ports controlled by a software-programmable element; programs are contained in sequences of messages sent to the SwitchWare switch\u27s input ports, which interpret the messages as programs. We call these Switchlets . This accelerates the pace of network evolution, as evolving user needs can be immediately reflected in the network infrastructure. Immediate reconfigurability enhances the adaptability of the network infrastructure in the face of unexpected situations. We call a network built from SwitchWare switches an active network

    An Experimental Evaluation of Rate Adaptation for Multi-Antenna Systems

    Full text link
    Abstract—Increasingly wireless networks use multi-antenna nodes as in IEEE 802.11n and 802.16. The Physical layer (PHY) in such systems may use the antennas to provide multiple streams of data (spatial multiplexing) or to increase the robustness of fewer streams. These physical layers also provide support for sending packets at different rates by changing the modulation and coding of transmissions. Rate adaptation is the problem of choosing the best transmission mode for the current channel and in these systems requires choosing both the level of spatial multiplexing and the modulation and coding. Hydra is an experimental wireless network node prototype in which both the MAC and PHY are highly programmable. Hydra’s PHY is essentially the 802.11n PHY, and currently supports two antennas and the same modulations and codings as 802.11n. Because of limitations of our hardware platform, th

    Dynamic software updating

    Full text link

    HIV Envelope gp120 Activates LFA-1 on CD4 T-Lymphocytes and Increases Cell Susceptibility to LFA-1-Targeting Leukotoxin (LtxA)

    Get PDF
    The cellular adhesion molecule LFA-1 and its ICAM-1 ligand play an important role in promoting HIV-1 infectivity and transmission. These molecules are present on the envelope of HIV-1 virions and are integral components of the HIV virological synapse. However, cellular activation is required to convert LFA-1 to the active conformation that has high affinity binding for ICAM-1. This study evaluates whether such activation can be induced by HIV itself. The data show that HIV-1 gp120 was sufficient to trigger LFA-1 activation in fully quiescent naïve CD4 T cells in a CD4-dependent manner, and these CD4 T cells became more susceptible to killing by LtxA, a bacterial leukotoxin that preferentially targets leukocytes expressing high levels of the active LFA-1. Moreover, virus p24-expressing CD4 T cells in the peripheral blood of HIV-infected subjects were found to have higher levels of surface LFA-1, and LtxA treatment led to significant reduction of the viral DNA burden. These results demonstrate for the first time the ability of HIV to directly induce LFA-1 activation on CD4 T cells. Although LFA-1 activation may enhance HIV infectivity and transmission, it also renders the cells more susceptible to an LFA-1-targeting bacterial toxin, which may be harnessed as a novel therapeutic strategy to deplete virus reservoir in HIV-infected individuals

    Application of Natural Antimicrobials for Food Preservation

    Full text link

    Safe and Efficient Persistent Heaps

    No full text
    • …
    corecore